Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 931: 172797, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38679084

RESUMEN

Human activities have strongly impacted the global climate, and during the last few decades the global average temperature has risen at a rate faster than at any time on record. High latitude lakes in the subarctic and arctic permafrost regions have particularly been vulnerable given the "Arctic amplification" phenomenon and acceleration in warming rate in the northern hemisphere (0.2-0.8 °C/decade). This paper presents a comprehensive overview of the last 30 years of research investigating how subarctic and Arctic lakes respond to climate warming. The review focused on studies where remote sensing technology was used to quantify these responses. The difference between summer lake water temperature and air temperature varied between 1.7 and 5.4 °C in subarctic lakes and 2.4-3.2 °C in Arctic lakes. Overall, the freezing date of lake ice is generally delayed and the date of lake thawing occurs earlier. Lake surface area (4-48.5 %), and abundance in the subarctic and Arctic region have increased significantly due to rising temperature, permafrost thawing, increased precipitation and other localized surface disturbances. However, in recent years, instances of lake shrinkage (between -0.4 % and -40 %) have also been reported, likely due to riparian overflow, groundwater infiltration and lateral drainage. Furthermore, in subarctic and Arctic lakes, climate change and permafrost thawing would release CO2 and CH4, and alter carbon dynamics in impacted lakes through various interconnected processes which could potentially affect the quality of carbon (terrestrial, algae) entering a lake system. The review also highlighted a potential intersection between permafrost melting and public health through human exposure to long-buried viruses. Subarctic and arctic ecosystems' responses to climate change will continue to be an area of intense research interest, and this review has highlighted priority areas for research and how remote sensing technologies can facilitate the pursuit of such a research agenda.

2.
Water Res ; 252: 121204, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38301526

RESUMEN

Dissolved organic matter (DOM) plays a significant role in aquatic biogeochemical processes and the carbon cycle. As global climate warming continues, it is anticipated that the composition of DOM in lakes will be altered. This could have significant ecological and environmental implications, particularly in frozen ground zones. However, there is limited knowledge regarding the spatial variations and molecular composition of DOM in lakes within various frozen ground zones. In this study, we examined the spatial variations of in-lake DOM both quantitatively, focusing on dissolved organic carbon (DOC), and qualitatively, by evaluating optical properties and conducting molecular characterization using Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Lakes in cold regions retained more organic carbon compared to those in warmer regions, the comparison of the mean value of DOC concentration of all sampling sites in the same frozen ground zone showed that the highest mean lake DOC concentration found in the permafrost zone at 21.4 ± 19.3 mg/L. We observed decreasing trends in E2:E3 and MLBL, along with increasing trends in SUVA254 and AImod, along the gradually warming ground. These trends suggest lower molecular weight, reduced aromaticity, and increased molecular lability of in-lake DOM in the permafrost zone compared to other frozen ground zones. Further FT-ICR MS characterization revealed significant molecular-level heterogeneity of DOM, with the lowest abundance of assigned DOM molecular formulas found in lakes within permafrost zones. In all studied zones, the predominant molecular formulas in-lake DOM were compounds consisted by CHO elements, accounting for 40.1 % to 63.1 % of the total. Interestingly, the percentage of CHO exhibited a gradual decline along the warming ground, while there was an increasing trend in nitrogen-containing compounds (CHON%). Meanwhile, a substantial number of polyphenols were identified, likely due to the higher rates of DOM mineralization and the transport of terrestrial DOM derived from vascular plants under the elevated temperature and precipitation conditions in the warming region. In addition, sulfur-containing compounds (CHOS and CHNOS) associated with synthetic surfactants and agal derivatives were consistently detected, and their relative abundances exhibited higher values in seasonal and short-frozen ground zones. This aligns with the increased anthropogenic disturbances to the lake's ecological environment in these two zones. This study reported the first description of in-lake DOM at the molecular level in different frozen ground zones. These findings underline that lakes in the permafrost zone serve as significant hubs for carbon processing. Investigating them may expand our understanding of carbon cycling in inland waters.


Asunto(s)
Materia Orgánica Disuelta , Lagos , Lagos/química , Espectrometría de Masas , China , Carbono
3.
Environ Sci Ecotechnol ; 19: 100337, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38107556

RESUMEN

The spatiotemporal variability of lake partial carbon dioxide pressure (pCO2) introduces uncertainty into CO2 flux estimates at the lake water-air interface. Knowing the variation pattern of pCO2 is important for obtaining accurate global estimation. Here we examine seasonal and trophic variations in lake pCO2 based on 13 field campaigns conducted in Chinese lakes from 2017 to 2021. We found significant seasonal fluctuations in pCO2, with decreasing values as trophic states intensify within the same region. Saline lakes exhibit lower pCO2 levels than freshwater lakes. These pCO2 dynamics result in variable areal CO2 emissions, with lakes exhibiting different trophic states (oligotrophication > mesotrophication > eutrophication) and saline lakes differing from freshwater lakes (-23.1 ± 17.4 vs. 19.3 ± 18.3 mmol m-2 d-1). These spatiotemporal pCO2 variations complicate total CO2 emission estimations. Using area proportions of lakes with varying trophic states and salinity in China, we estimate China's lake CO2 flux at 8.07 Tg C yr-1. In future studies, the importance of accounting for lake salinity, seasonal dynamics, and trophic states must be noticed to enhance the accuracy of large-scale carbon emission estimates from lake ecosystems in the context of climate change.

4.
Sci Total Environ ; 899: 166363, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37598955

RESUMEN

In recent years, under the dual pressure of climate change and human activities, the cyanobacteria blooms in inland waters have become a threat to global aquatic ecosystems and the environment. Phycocyanin (PC), a diagnostic pigment of cyanobacteria, plays an essential role in the detection and early warning of cyanobacterial blooms. In this context, accurate estimation of PC concentration in turbid waters by remote sensing is challenging due to optical complexity and weak optical signal. In this study, we collected a comprehensive dataset of 640 pairs of in situ measured pigment concentration and the Ocean and Land Color Instrument (OLCI) reflectance from 25 lakes and reservoirs in China during 2020-2022. We then developed a framework consisting of the water optical classification algorithm and three candidate algorithms: baseline height, band ratio, and three-band algorithm. The optical classification method used remote sensing reflectance (Rrs) baseline height in three bands: Rrs(560), Rrs(647) and Rrs(709) to classify the samples into five types, each with a specific spectral shape and water quality character. The improvement of PC estimation accuracy for optically classified waters was shown by comparison with unclassified waters with RMSE = 72.6 µg L-1, MAPE = 80.4 %, especially for the samples with low PC concentration. The results show that the band ratio algorithm has a strong universality, which is suitable for medium turbid and clean water. In addition, the three-band algorithm is only suitable for medium turbid water, and the line height algorithm is only suitable for high PC content water. Furthermore, the five distinguished types with significant differences in the value of the PC/Chla ratio well indicated the risk rank assessment of cyanobacteria. In conclusion, the proposed framework in this paper solved the problem of PC estimation accuracy problem in optically complex waters and provided a new strategy for water quality inversion in inland waters.

5.
Sci Total Environ ; 892: 164474, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37268137

RESUMEN

Total suspended matter (TSM) as a critical water quality parameter is closely linked with nutrients, micropollutants, and heavy metals threatening the ecological health of aquatic ecosystems. However, the long-term spatiotemporal dynamics of lake TSM in China and their response to natural and anthropogenic factors are rarely explored. In this study, based on Landsat top-of-atmosphere (TOA) reflectance embedded in GEE and in-situ TSM data collecting in the periods 2014-2020, we developed a unified empirical model (R2 = 0.87, RMSE = 10.16 mg/L, and MAPE = 38.37 %) to retrieve the autumn TSM of lakes at national scale. This model exhibited stable and reliable performances through transferability validation and comparative analysis with published TSM models, and was implemented to generate autumn TSM maps for large lakes (≥50 km2) across China during 1990-2020.We found that 78.03 % of large lakes with TSM < 20 mg/L were dominant in 2020 across China, and these lakes were mainly located in the plateau and mountain regions. In the first gradient terrain (FGT) and second gradient terrain (SGT), the number of lakes showing significant (p < 0.05) decreasing TSM trends increased from 1990-2004 to 2004-2020, while those with opposite directions in TSM decreased. Lakes in the third gradient terrain (TGT) exhibited the inverse quantitative change in these two TSM trends compared with the FGT and SGT. A relative contribution analysis at the watershed level indicated that the first two leading factors that control TSM significant change in the FGT were lake area and wind speed, in the SGT were lake area and NDVI, and in the TGT were population and NDVI, respectively. The impacts of anthropogenic factors on lakes are continuing, particularly in eastern China, and more efforts are needed to improve and protect the water environment in the future. Our findings might help water resource managers better grasp the current state of water quality.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Efectos Antropogénicos , Lagos , China
6.
Water Res ; 236: 119974, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37084579

RESUMEN

Anaerobic biological treatment was regarded as one of promising options for realizing concurrent WAS reduction, stabilization and bioenergy/bioresource recycle. But the relatively low treatment efficiency limited its spreading application toward larger scale considerably in China. Aimed at such barrier, this study offered a novel enhancing strategy for achieving high-efficiency of bioenergy/bioresource recycle from WAS anaerobic treatment via improving bioelectrogenesis/acidogenesis using sludge source-redox mediators (SSRMs). SSRMs not only facilitated bioeletrogenesis with an increasing efficiency of 36% for voltage output and 39% for bioelectricity bioconversion, but also enhanced acidogenesis of WAS with a mean elevating efficiency of 37.5% of volatile fatty acids (VFAs) production within 5 d Mechanistic investigations indicated that SSRMs had a potential influence on improving the protein and carbohydrate metabolisms-related genes' expression for enhancing bioelectrogenesis and acidogenesis. Moreover, SSRMs exerted roles of electrochemical "catalysts" or as terminal electron acceptors with affecting functional proteins of complexes of Ⅰ and Ⅳ in electron transfer chains for improving electron transfer efficiency. Meanwhile, the core members' abundance, microbial diversity and community distributive evenness were prompted concurrently for carrying out superior bioelectrogenesis and acidogenesis. A schematic illustration was established for demonstrating the mechanism of SSRMs for enhancing bioelectrogenesis and acidogenesis via changing microbial metabolism functions, enhancing electron transfer efficiency, and regulating functional genes' expression of functional proteins (up-regulating cytochrome c oxidase and down-regulating-NADH dehydrogenase). This study provided an effective enhancing strategy for facilitating WAS bioconversion to bioenergy/bioresource with well-process sustainability.


Asunto(s)
Ácidos Grasos Volátiles , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Fermentación , Oxidación-Reducción , Proteínas , Anaerobiosis , Concentración de Iones de Hidrógeno , Reactores Biológicos
7.
Water Res ; 230: 119540, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36608522

RESUMEN

The pollution or eutrophication affected by dissolved organic matter (DOM) composition and sources of inland waters had attracted concerns from the public and government in China. Combined with remote sensing techniques, the fluorescent DOM (FDOM) parameters accounted for the important part of optical constituent as chromophoric dissolved organic matter (CDOM) was a useful tool to trace relative DOM sources and assess the trophic states for large-scale regions comprehensively and timely. Here, the objective of this research is to calibrate and validate a general model based on Landsat 8 OLI product embedded in Google Earth Engine (GEE) for deriving humification index (HIX) based on EEMs in lakes across China. The Landsat surface reflectance was matched with 1150 pairs fieldtrip samples and the nine sensitive spectral variables with good correlation with HIX were selected as the inputs in machine learning methods. The calibration of XGBoost model (R2 = 0.86, RMSE = 0.29) outperformed other models. Our results indicated that the entire dataset of HIX has a strong association with Landsat reflectance, yielding low root mean square error between measured and predicted HIX (R2 = 0.81, RMSE = 0.42) for lakes in China. Finally, the optimal XGBoost model was used to calculate the spatial distribution of HIX of 2015 and 2020 in typical lakes selected from the Report on the State of the Ecology and Environment in China. The significant decreasing of HIX from 2015 to 2020 with trophic states showed positive control of humification level of lakes based on the published document of Action plan for prevention and control of water pollution in 2015 of China. The calibrated model would greatly facilitate FDOM monitoring in lakes, and provide indicators for relative DOM sources to evaluate the impact of water protection measures or human disturbance effect from Covid-19 lockdown, and offer the government supervision to improve the water quality management for lake ecosystems.


Asunto(s)
COVID-19 , Monitoreo del Ambiente , Humanos , Monitoreo del Ambiente/métodos , Lagos , Tecnología de Sensores Remotos , Materia Orgánica Disuelta , Ecosistema , Control de Enfermedades Transmisibles , China
8.
Water Res ; 226: 119287, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36323210

RESUMEN

Enhancing anaerobic treatment efficiency of waste activated sludge (WAS) toward preferable resource recovery would be an important requirement for achieving carbon-emission reduction, biosolids minimization, stabilization and security concurrently. This study demonstrated the synergic effect of potassium ferrate (PF) and nitrite on prompting WAS solubilisation and acidogenic fermentation toward harvesting volatile fatty acids (VFAs). The results indicated the PF+NaNO2 co-pretreatment boosted 7.44 times and 1.32 times higher WAS solubilisation [peak soluble chemical oxygen demand (SCOD) of 2680 ± 52 mg/L] than that by the single nitrite- and PF-pretreatment, respectively, while about 2.77 times and 2.11 times higher VFAs production were achieved (maximum VFAs accumulation of 3536.25 ± 115.24 mg COD/L) as compared with the single pretreatment (nitrite and PF)-fermentations. Afterwards the WAS dewaterability was improved simultaneously after acidogenic fermentation. Moreover, a schematic diagram was established for illustrating mechanisms of the co-pretreatment of PF and nitrite for enhancing the VFAs generation via increasing key hydrolytic enzymes, metabolic functional genes expression, shifting microbial biotransformation pathways and elevating abundances of key microbes in acidogenic fermentation. Furthermore, the mechanistic investigations suggested that the PF addition was conducive to form a relatively conductive fermentation environment for enhancing electron transfer (ET) efficiency, which contributed to the VFAs biotransformation positively. This study provided an effective strategy for enhancing the biodegradation/bioconversion efficiency of WAS organic matters with potential profitable economic returns.


Asunto(s)
Nitritos , Aguas del Alcantarillado , Fermentación , Concentración de Iones de Hidrógeno , Ácidos Grasos Volátiles , Ácidos
9.
Water Res ; 224: 119073, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36113235

RESUMEN

Dissolved organic matter (DOM), a heterogeneous mixture of diverse compounds with different molecular weights, is crucial for the lake carbon cycle. The properties and concentration of DOM in lakes are closely related to anthropogenic activities, terrigenous input, and phytoplankton growth. Thus, the lake's trophic state, along with the above factors, has an important effect on DOM. We determined the DOM sources and molecular composition in six lakes along a trophic gradient during and after phytoplankton bloom by combining optical techniques and the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). CDOM pools in eutrophic lakes may be more biologically refractory than in oligotrophic and mesotrophic lakes. Molecular formulas of DOM were positively correlated with the TSI (trophic state index) value (R2 = 0.73), with the nitrogen-containing compounds (CHON) being the most abundant formulas in all studied lakes. Eutrophication modified the molecular formulas of DOM to have less CHO% and more heteroatom S-containing compounds (CHOS% and CHNOS%), and this was the synactic result of the anthropogenic perturbation and phytoplankton proliferation. In eutrophic lakes, summer DOM showed higher molecular lability than in autumn, which was related to the seasonal phytoplankton community succession. Although the phytoplankton-derived DOM is highly bioavailable, we detected a simpler and more fragile phytoplankton community ecosystem in autumn, which may be accompanied by a lower phytoplankton production and metabolic activity. Therefore, we concluded that the lake eutrophication increased the allochthonous DOM accumulation along with sewage and nutrient input, and subsequently increased its release with phytoplankton bloom. Eutrophication and phytoplankton growth are accompanied by more highly unsaturated compounds, O3S+O5S compounds, and carboxylic-rich alicyclic compounds (CRAMs), which are the biotransformation product of phytoplankton-derived DOM. Eutrophication may be a potential source of refractory DOM compounds for biodegradation and photodegradation. Our results can clarify the potential role of water organic matter in the future global carbon cycle processes, considering the increasing worldwide eutrophication of inland waters.


Asunto(s)
Lagos , Fitoplancton , China , Materia Orgánica Disuelta , Ecosistema , Lagos/química , Nitrógeno/análisis , Aguas del Alcantarillado/análisis , Agua/análisis
10.
Sci Total Environ ; 846: 157328, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-35868401

RESUMEN

Total suspended matter (TSM), as an indicator of the concentration of fine materials in the water column including particulate nutrients, pollutants, and heavy metals, is widely used to monitor aquatic ecosystems. However, the long-term spatiotemporal variations of TSM in lakes across the Tibetan Plateau (TP) and their response to environmental factors are rarely explored. Accordingly, taking advantage of the Landsat top-of-atmosphere reflectance and in-situ data, an empirical model (R2 = 0.83, RMSE = 1.08 mg/L, and MAPE = 19.49 %) was developed to estimate the average autumnal TSM in large TP lakes (≥50 km2) during the 1990-2020 period. For analyzing the spatiotemporal variability in TP lakes TSM, the examined lakes were classified into four types (Type A-D) based on their water storage changing in different periods. The results showed that the lakes in the southern and some northeastern parts of the TP exhibited lower TSM values than those situated in other regions. The assessment of TSM in each of these four lake types showed that more than half of them had a TSM value of <20 mg/L. Apart from Type D, the lakes with the TSM showing significantly decreasing trends were dominantly Types A-C. A relative contribution analysis involving five driving factors indicated that they contributed by >50 % to lake TSM interannual variation in 73 out of 114 watersheds, and the lakes area change demonstrated the greatest contribution (82.2 %), followed by wind speed (11.0 %). Further comparison between the entire lake and the non-expansive regions suggested that the expansive region played an indispensable role in determining the TSM value of the whole lake. This study can help to better understand the water quality condition and provide valuable information for policy-makers to maintain sustainable development in the TP region.


Asunto(s)
Monitoreo del Ambiente , Lagos , China , Ecosistema , Monitoreo del Ambiente/métodos , Tibet , Calidad del Agua
11.
Water Res ; 221: 118779, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35763928

RESUMEN

Dissolved organic matter (DOM) plays an essential role in the global carbon biogeochemical cycle for aquatic ecosystems. The complexity of DOM compounds contributes to the accurate monitoring of its sources and compositions from large-scale patterns to microscopic molecular groups. Here, this study demonstrates the diverse sources and compositions for humic-rich lakes and protein-rich lakes for large-scale regions across China with the linkage to optical components and molecular high-resolution mass spectrometry properties. The total fluorescence intensity of colored DOM (CDOM) for humic-rich lake regions (0.176 Raman unit; R.U.) is significantly (p<0.05) higher than that of the protein-rich lake region (0.084 R.U.). The combined percentages of CDOM absorption variance explained by the anthropogenic and climatic variables across the five lake regions of Northeastern lake region (NLR), Yungui Plateau lake region (YGR), Inner Mongolia-Xinjiang lake region (MXR), Eastern lake region (ELR), and Tibetan-Qinghai Plateau lake region (TQR) were 86.25%, 82.57%, 80.23%, 88.55%, and 87.72% respectively. The averaged relative intensity percentages of CHOS and CHONS formulas from humic-rich lakes (90.831‰, 10.561‰) were significantly higher than that from the protein-like lakes (47.484‰, 5.638‰), respectively. The more complex molecular composition with higher aromaticity occurred in the humic-rich lakes than in the protein-rich lakes. The increasing anthropogenic effects would significantly enhance the sources, transformation, and biodegradation of terrestrial DOM and link to the greenhouse gas emission and the carbon cycle in inland waters.


Asunto(s)
Materia Orgánica Disuelta , Lagos , Ciclo del Carbono , China , Ecosistema , Lagos/química , Espectrometría de Fluorescencia , Análisis Espectral
12.
Opt Express ; 30(7): 10329-10345, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35473003

RESUMEN

The Trophic state index (TSI) is a vital parameter for aquatic ecosystem assessment. Estimating TSI by remote sensing is still a challenge due to the multivariate complexity of the eutrophication process. A comprehensive in situ spectral-biogeochemical dataset for 7 lakes in Northeast China was collected in October 2020. The dataset covers trophic states from oligotrophic to eutrophic, with a wide range of total phosphorus (TP, 0.07-0.2 mg L-1), Secchi disk depth (SDD, 0.1-0.78 m), and chlorophyll a (Chla, 0.11-20.41 µg L-1). Here, we propose an empirical method to estimate TSI from remote sensing data. First, TP, SDD, and Chla were estimated by band ratio/band combination models. Then TSI was estimated using the Carlson model with a high R2 (0.88), a low RMSE (3.87), and a low MRE (6.83%). Synergistic effects between TP, SDD, and Chla dominated the trophic state, changed the distribution of light in the water column, affected the spectral characteristics. Furthermore, the contribution of each parameter for eutrophication were different among the studied lakes from ternary plot. High Chla concentration was the main reason for eutrophication in HMT Lake with 45.4% of contribution more than the other two parameters, However, in XXK Lake, high TP concentrations were the main reason for eutrophication with 66.8% of contribution rather than Chla and SDD. Overall, the trophic state was dominated by TP, and SDD accounted for 85.6% of contribution in all sampled lakes. Additionally, we found using one-parameter index to evaluate the lake trophic state will lead to a great deviation, even with two levels of difference. Therefore, multi-parameter TSI is strongly recommended for the lake trophic state assessment. Summarily, our findings provide a theoretical and methodological basis for future large-scale estimations of lake TSI using satellite image data, help with water quality monitoring and management.


Asunto(s)
Ecosistema , Lagos , Clorofila A , Monitoreo del Ambiente/métodos , Imágenes Hiperespectrales
13.
Glob Chang Biol ; 28(7): 2327-2340, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34995391

RESUMEN

Algal blooms (ABs) in inland lakes have caused adverse ecological effects, and health impairment of animals and humans. We used archived Landsat images to examine ABs in lakes (>1 km2 ) around the globe over a 37-year time span (1982-2018). Out of the 176032 lakes with area >1 km2 detected globally, 863 were impacted by ABs, 708 had sufficiently long records to define a trend, and 66% exhibited increasing trends in frequency ratio (FRQR, ratio of the number of ABs events observed in a year in a given lake to the number of available Landsat images for that lake) or area ratio (AR, ratio of annual maximum area covered by ABs observed in a lake to the surface area of that lake), while 34% showed a decreasing trend. Across North America, an intensification of ABs severity was observed for FRQR (p < .01) and AR (p < .01) before 1999, followed by a decrease in ABs FRQR (p < .01) and AR (p < .05) after the 2000s. The strongest intensification of ABs was observed in Asia, followed by South America, Africa, and Europe. No clear trend was detected for the Oceania. Across climatic zones, the contributions of anthropogenic factors to ABs intensification (16.5% for fertilizer, 19.4% for gross domestic product, and 18.7% for population) were slightly stronger than climatic drivers (10.1% for temperature, 11.7% for wind speed, 16.8% for pressure, and for 11.6% for rainfall). Collectively, these divergent trends indicate that consideration of anthropogenic factors as well as climate change should be at the forefront of management policies aimed at reducing the severity and frequency of ABs in inland waters.


Asunto(s)
Monitoreo del Ambiente , Eutrofización , Animales , Cambio Climático , Monitoreo del Ambiente/métodos , Lagos , Viento
14.
Sci Total Environ ; 810: 151188, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34710411

RESUMEN

Lake clarity, usually measured by Secchi disc depth (SDD), is a reliable proxy of lakes trophic status due to its close link with total suspended matter, chlorophyll-a, and nutrients. Trained with in-situ measured SDD and match-up Landsat images, we established various regression models to estimate SDD for global lakes. We selected a unified model which demonstrated good spatiotemporal transferability, and has potential to map SDD in different years with good quality of Landsat top-of-atmosphere (TOA) images embedded in Google Earth Engine (GEE). The unified model was successfully calibrated (n = 3586 data points, R2 = 0.84, MAPE = 29.8%) against SDD measured in 2235 lakes across the world, and the validation (n = 1779, R2 = 0.76, MAPE = 38.8%) also exhibited stable performance. The unified model was tuned to historical SDD measurements coincident with different Landsat sensors (L5-TM, L7-ETM+, L8-OLI) launched over the past four decades (1984-2020), thus confirming its temporal stability. Global SDD was mapped using GEE with OLI TOA products mainly acquired in 2019 to examine the spatial variation of lake water clarity (lake surface area ≥ 1 ha) all over the world. Worldwide, lake water clarity averaged 3.13 ± 1.71 m in 2019, but exhibited remarkable spatial variability due to catchment hydrological and landscape settings, lake morphology, elevation and anthropogenic impact. Inland waters in Europe (4.18 ± 1.82 m) and North America (3.84 ± 1.77 m) had the highest clarity due to greater water depth combined with less human disturbance in the high latitude regions. Lakes in South America (2.50 ± 2.33 m), Asia (2.44 ± 1.63 m) and Africa (2.36 ± 0.72 m) displayed intermediate clarity. Lakes in Oceania (1.97 ± 1.48 m) exhibited the lowest clarity for all continents except Antarctica. Further, we used the mapped SDD to evaluate water trophic status using the Carlson trophic state index. Our results indicate that, in 2019, about 63.6% of the lake areas and 47.8% of total lake numbers (2,219,627/4,646,056) were oligotrophic for global lakes, while about 23.6% areal percent and 37.1% of lake numbers are eutrophic mostly as a result of their being located in agricultural and urban-dominated drainage basins. This study, for the first time, provides water clarity information for lakes with area ≥ 1 ha all over the world with 30-m resolution and facilitates the understanding of the water clarity relevant to TSM (r = 0.95), Chl-a (r = 0.73), total phosphorus (r = 0.75), total nitrogen (r = 0.60), which could further provide water clarity data and technical support for trophic level evaluations as well. This unified model could serve as a powerful research tool for long-term monitoring of aquatic ecosystems and assessing their resilience to anthropogenic disturbance and climate change-related stressors.


Asunto(s)
Efectos Antropogénicos , Ecosistema , Monitoreo del Ambiente , Humanos , Lagos , Calidad del Agua
15.
Sci Total Environ ; 806(Pt 4): 151374, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34740658

RESUMEN

In this study, we empirically developed a robust model (the Root Mean Square Error (RMSE), bias, NSE and RE were 26.63 mg/L, -4.86 mg/L, 0.47 and 16.47%, respectively) for estimating the total suspended solids (TSS) concentrations in lakes and reservoirs (Hereinafter referred to as lakes) across the Eastern Plain Lake (EPL) Zone. The model was based on 700 in-situ TSS samples collected during 2007-2020 and logarithmic transformed red band reflectance of Landsat data. Based on the Google Earth Engine (GEE), the TSS concentrations in 16,804 lakes were mapped from 1984 to 2019. The results demonstrated a decreasing tendency of TSS in 82.2% of the examined lakes (72.5% of the basins) indicating that the pollutants carried by TSS flowing into the lakes were decreasing. Statistically significant variation (p < 0.05) was found in half of these lakes (28.6% of the basins). High TSS level (>100 mg/L) was observed in 0.31% of lakes (1.1% of the basins). The changing rates of TSS in 47.8% of the lakes (52.7% of the basins) ranged between -50 mg/L/yr and 0. We found high and significantly increased relative spatial heterogeneity of TSS in 4.6% and 6.5% of lakes, respectively. Likewise, the environmental factors, i.e., fertilizer usage, domestic wastewater, industrial wastewater, precipitation, wind speed and Normalized Difference Vegetation Index (NDVI) exhibited a significant correlation with interannual TSS in 38, 21, 20, 11, 17 and 15 of the 91 basins, respectively. This analysis indicated that only precipitation and fertilizer usage were significantly (p < 0.05) related to the spatial distribution of TSS. The relative contributions of the six factors to the interannual TSS changes were varied in different basins. Overall, the NDVI (the representation of vegetation cover) had a high mean contribution to the interannual TSS changes with an average contribution of 7.2%, and contributions of fertilizer were varied greatly among the basins (0.01%-68%). Human activities (fertilizer usage, domestic wastewater, industrial wastewater) and natural factors (precipitation, wind speed and NDVI) played relatively important roles to TSS changes in 14 and 15 of the 91 basins, respectively. Beyond the six factors in this study, other unanalyzed factors (such as lake depth and soil texture) also had some impacts on the distribution of TSS in the study area.


Asunto(s)
Monitoreo del Ambiente , Lagos , China , Humanos , Viento
16.
J Environ Manage ; 302(Pt A): 113958, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34678543

RESUMEN

More and more hyper-spectral satellites will be used to estimate total suspended matter (TSM) in waters instead of multi-spectral satellites, such as China's Gaofen-5 and Zhuhai-1. Although they have not been widely used because of the consistency of sampling and image time. Hence, the study based on measured hyper-spectroscopy is important for applying to hyper-spectral satellites. Fractional-order derivatives (FODs) considers more detailed spectral information, and it is a better spectral preprocessing method than conventional integer-order derivatives. The application and analysis of FODs for spectra in waters is rare. If FOD is successfully applied to estimate TSM, the TSM mapping with FOD using hyper-spectral satellites will be meaningful. Based on these points, this study aimed to apply FOD to predict TSM and to prove the prediction feasibility of FOD in waters. Different prediction models and eight FOD transformation processes with increment of 0.25 per step for 392 spectral reflectance data from China were used and compared. The prediction models include the optimum models of the single wavelength, ratio index, difference index and TSM index at each FOD order, and the random forest (RF) model with all wavelengths was also used. Discrete wavelet transform (DWT) was used to reduce noise and improve the model accuracy after using FOD. Our results achieved the followings First, FOD enhanced spectral characteristics at 500-600 nm and 800 nm that were affected by TSM. Second, the correlation between TSM and FOD spectra was enhanced (e.g., the correlation coefficients of 19 wavelengths (789-807 nm) of 0.75-order were higher than 0.8 but the original spectra were not). Third, FOD improved the performance of different prediction models, and the RF model from 0.5-order to 1.25-order derivative spectra all led good results (). Fourth, DWT can reduce the noise and improve the performance, and FOD-DWT model of 1.25-order led the R2 of 0.84, RMSE of 16.30 and MAPE of 78.62 in validation. Overall, our results suggest that FOD can improve the prediction performance for most models, and the optimum order of some models is not integer. Our results also provide a reference for predicting other water quality parameters and mapping these parameters using hyper-spectral satellites. The accurate estimation of TSM is helpful for protecting ecological and social environments.


Asunto(s)
Monitoreo del Ambiente , Análisis de Ondículas , China , Análisis Espectral
17.
Environ Res ; 201: 111579, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34197817

RESUMEN

Reservoirs were critical sources of drinking water for many large cities around the world, but progress in the development of large-scale monitoring protocols to obtain timely information about water quality had been hampered by the complex nature of inland waters and the various optical conditions exhibited by these aquatic ecosystems. In this study, we systematically investigated the absorption coefficient of different optically-active constituents (OACs) in 120 reservoirs of different trophic states across five eco-regions in China. The relationships were found between phytoplankton absorption coefficient at 675 nm (aph (675)) and Chlorophyll a (Chla) concentration in different regions (R2:0.60-0.82). The non-algal particle (NAP) absorption coefficient (aNAP) showed an increasing trend for reservoirs with trophic states. Significant correlation (p < 0.05) was observed between chromophoric dissolved organic matter (CDOM) absorption and water chemical parameters. The influencing factors for contributing the relative proportion of OACs absorption including the hydrological factors and water quality factors were analyzed. The non-water absorption budget from our data showed the variations of the dominant absorption types which underscored the need to develop and parameterize region-specific bio-optical models for large-scale assessment in water reservoirs.


Asunto(s)
Ecosistema , Fitoplancton , China , Clorofila A , Hidrología
18.
Environ Pollut ; 287: 117231, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34000672

RESUMEN

The Yellow River is the second largest river in China. Carbon transport by the Yellow River has significant influence on riverine carbon cycles in Asia. During the wet season, the riverine carbon was mainly found in dissolved form, i.e., dissolved organic carbon (DOC), along the entire course of the river. The distinct spatial variations of DOC concentration were observed at different reaches of the mainstream (p < 0.01), while the highest mean DOC concentration was generally observed at midstream (4.13 ± 0.91 mg/L). Carbon stable isotope analysis δ13C and C: N ratio of DOC, evidenced the sources of DOC in headwater and upstream were primarily the terrestrial plants (94% and 61%), but it was changed to soil organic matter (SOM) in mid- and downstream (36% and 37%), and the contribution of sewage to DOC were also increased to 17% and 18%. In the whole mainstream of the Yellow River, water temperature (WT) had a significant impact on DOC concentration, and it could explain 67% of the DOC variance. However, in a large catchment, the driving mechanisms on the DOC variations in headwaters will not necessarily be those controlling DOC trends in downstream. The study firstly quantified, in headwater and upstream, the natural factors explained as much as 65% and 73% of the DOC variations, respectively. In mid- and downstream areas, DOC was significantly influenced by the amount of wastewater discharged by the industry and the use of chemical fertilizers (p < 0.05). These findings may facilitate a better assessment of global riverine carbon cycling and may help to reveal the importance of the balance between development and environmental sustainability with the changing DOC transport features in the Yellow River due to human disturbances.


Asunto(s)
Carbono , Monitoreo del Ambiente , Carbono/análisis , Isótopos de Carbono/análisis , Humanos , Ríos , Estaciones del Año
19.
Environ Res ; 199: 111299, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33984309

RESUMEN

Water clarity, denoted by the Secchi disk depth (SDD), is one of the most important indicators for monitoring water quality. In the Songhua River basin (SHRB), few studies have used Landsat to monitor long-term (3-4 decades) changes in lake SDD and explore the impact of natural and human factors on SDD interannual variation at the watershed scale. Lakes in the SHRB are of great significance to local populations. Understanding the spatiotemporal dynamics of SDD could help policymakers manage, protect, and predict lake water quality. We utilized the Landsat red/blue band ratio in the Google Earth Engine to estimate the SDD of 77 lakes and generated annual mean SDD maps from 1990 to 2018. The results of the SDD interannual changes showed that the water quality in the SHRB has improved since 2005. Specifically, the SDD in the SHRB displayed a significant increasing trend (p < 0.05) from 0.29 m in 2005 to 0.37 m in 2018. Moreover, the number of lakes displaying a significant increasing trend for SDD increased from 18 between 1990 and 2005 to 31 between 2005 and 2018. We also found that use of chemical fertilizer significantly impacted lakes, followed by wastewater discharge and normalized difference vegetation index. Improvements in the quantity and ability of wastewater discharge treatment and increased vegetation cover have alleviated water pollution; however, the non-point pollution of agriculture still poses a threat to some lakes in the SHRB. Therefore, more efforts should be made to further improve the aquatic ecological environment of SHRBs.


Asunto(s)
Ríos , Calidad del Agua , China , Monitoreo del Ambiente , Humanos , Lagos , Agua , Contaminación del Agua
20.
Sci Total Environ ; 777: 145956, 2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-33676222

RESUMEN

Chlorpyrifos (CP) is a typical organophosphorus insecticide, which poses serious threats to the natural environment and human health. Strategies for the fast elimination of CP and its toxic hydrolytic metabolite 3,5,6-trichloro-2(1H)-pyridianol (TCP) in drainage water are urgently needed. The fate of CP and TCP in microcosm-scale subsurface batch constructed wetlands (SSBCWs) was quantified with different macrophyte species under soda saline-alkaline (SSA) condition and effective intensification strategies were developed. The macrophyte species Canna indica outperformed Phragmites australis and Typha orientalis for CP and TCP removal in SSBCWs. Mass balance calculation indicates the fate of CP in SSBCWs was residue in water (≤8%), alkaline hydrolysis (18.93-57.42%), microbial degradation (37.75-61.91%), substrate adsorption (~4-14%), and macrophyte uptake (≤3%). The addition of ferric-carbon (Fe-C) as a substrate amendment in SSBCWs increased the CP removal percentage by 35% and reduced the effluent TCP concentration by ~70% during Day 1-4 on average compared with the unintensified control. Fe-C addition simplified the microbial community diversity, while increasing the relative abundance of Proteobacteria which tolerates the microelectrolytic environment. A single application of liquid microbial agent improved CP removal percentage by 84% and decreased the effluent TCP concentration by two orders of magnitude during Day 1-4. The hydraulic retention time for thorough removal of TCP reduced from over 8 d to 4 d. Although only two dominant microbial genera (i.e., Sphingomonas and Pseudomonas) adapted to the environment with CP and SSA, they accelerated CP and TCP degradation via their own metabolism and co-metabolism with other indigenous microorganisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...